Posted on

Summer Art, AI & Robotics class captures imaginations in Somerville

SHS students work on basic robot kits.
SHS students work on their basic robot kits.

Sixteen Somerville High School (SHS) students from diverse backgrounds came together to explore the combination of art, storytelling, artificial intelligence (A.I.), and robotics. Their teachers worked with Lesley STEAM to weave this content together with relevant STEAM and CTE standards and learning objectives. The final product was a hybrid course that took place in the High School’s new FabLab, as well as online with Lesley University’s College of Art and Design faculty, a comic and graphic novel artist. They earned four Lesley college credits that were matched by 2.5 math and 2.5 art credits from SHS. Many of the skills they learned can be applied to other classes they can take during the school year such as math, language arts, art, and computer science.

Inspired by developments in artificial intelligence such as machine learning and A.I. sensing, the SHS/LSTEAM team facilitated several activities such as learning Scratch programming language, building basic robots, then students gained fine arts and storytelling skills from drawing comics. Class activities culminated in a capstone “artbot” project. The main objectives of the class were for students to:

  • Show their understanding of storytelling by animating a character using craft material & servos.
  • Demonstrate knowledge of robotics by building robots that alter the environment through art.
  • Show their understanding of the iterative design process by rebuilding/repurposing their robot for new ends.

Students began the class by learning about artists who explore human-machine collaboration and interaction such as Soughwen Chung and Stephanie Dinkins. They learned about Joy Buolamwini, a coder who uses art and research to illuminate the social implications of artificial intelligence. 

Joy Buolamwini talks about racial bias in AI.
Joy Buolamwini talks about racial bias in AI. © TED

During the first two weeks, students learned how to use design thinking based on a culturally relevant making model from LSTEAM staff. The model included “design cyphers”, concept mapping, and “collaborative peer reviews.” They learned about the fundamentals of computer programming with Scratch, as well as how to build and program robots to imitate human creative expression. Later, they used an A.I. sensing extension in Scratch to enable their robots to respond and react to human movement.

During the third week, students worked with their peers, teachers and LSTEAM staff to synthesize what they learned in art and storytelling with their A.I. robot builds. In the morning, they took “Comics and the Graphic Novel” online with Barrington Edwards, summer faculty from Lesley University’s College of Art and Design; and in the afternoon, they met at the FabLab to engage in tasks that allowed them to combine clearly and coherently different ideas from visual storytelling with their physical robot prototypes. These activities culminated in student presentations synthesizing their work at the end of Friday class.

SHS student capstone artbot project.
This SHS student capstone “artbot” project is a Kraken monster that paints.

For the last and final week, students worked independently on their capstone projects, with support from the SHS/LSTEAM team. Students participated in collaborative peer reviews and gallery walks to get feedback from their peers, school teachers and administrators, and outside experts. On the last day each individual student or small group of students presented their final projects to the general school community.

Making the Artbots

For this class, students were tasked with designing, programming, and prototyping, and presenting their artbots, which are robots that respond to people and make art. They created a short comic about how to make an artbot and presented them during class. To build the artbot students were given design constraints such as: 

  • Your artbot can move freely or be attached to an object or a person
  • Your artbot must generate or help users to make art 
  • Your artbot must convey a story or a message (ex. through gesture)
  • You are encouraged to use pose detection / pose estimation 
  • You are encouraged to use sensors or other peripherals in your robot design
  • You must design and fabricate your own chassis that can include single or multiple motors/servos, wheels, or other moving parts

Pose estimation is a computer vision technique that predicts and tracks the location of a person or object. This is done by looking at a combination of the pose and the orientation of a given person or object. Students learned how to add code modules and extensions to Scratch that detect human movement using the computer’s in-board (web) camera. This builds on the Face Sensing block that uses machine learning that is trained to see faces.

Examples of the students’ final ‘artbots’ include “Cube”, a robot that is controlled by two mini-computers called BBC Micro:bits; “The Crab” that moves left, right, forward, and backward using servos motors; a “Boatman Painter” bot that actually paints; a “Kraken” bot that draws; a “Ladybug” bot that realizes how beautiful the sunshine is and draws sun symbols on paper; and a Butterfly bot that collaborates with humans to draw colorful pictures. Two students created a skateboarding “Ninja Turtle” that used music as the art form to define its movement. And finally, one student created their version of the “Scratch cat” as a motion-sensing A.I. robot that uses peoples’ body movements to draw.

To learn more, check out the students’ final artbots:

This course was made possible through the support of BiogenSTAR, Somerville High School, Lesley University College of Art and Design, and the City of Somerville.

Posted on

Renaissance Community School faculty visit Lesley STEAM Learning Lab for maker mindset field trip

A group of teachers from New Bedford Public Schools interact with the MaKey MaKey and Scratch. They are connecting the MaKey MaKey alligator clips to brass fasteners on a map of the US and subsequently programming Scratch to trigger facts about each state or state capital.

Lesley STEAM Learning Lab welcomed the entire faculty and administration from the Renaissance Community School in New Bedford, Mass, for a full day interactive workshop. Based on the school’s desire to integrate standards-based making into the curriculum, Lesley STEAM developed a series of projects to engage the staff in collaborative problem solving and inquiry-based learning.

Continue reading Renaissance Community School faculty visit Lesley STEAM Learning Lab for maker mindset field trip

Posted on

Lesley STEAM joins in on 2018 Scratch Day @ MIT

Scratch Day at MIT participants engaged in circuit playground activity
Lesley STEAM’s Sue Cusack will join the Scratch Day @ MIT volunteer squad for an action-packed day of hands-on Scratch demonstrations, panels, tinkering, social meet-ups, and more. The Lifelong Kindergarten Group, organizers of the day, will host the 2018 Scratch Day @ MIT onsite event at their home in the MIT Media Lab.  Scratch Day is a worldwide network of events that encourages any organization or individual to host their own workshop or gathering in celebration of Scratch programming. Find a Scratch Day close to you – or create your own by clicking here!