Visualizing Computational Thinking in STEAM with 3D Modeling.

RHODE ISLAN

Rashmi Pimprikar

ISTE Computer Science PLN Leadership Team Program Director STEAM + Computer Science Lesley University STEAM Learning Lab, Graduate School of Education

&

Director of Curriculum, C-STEAM Futures rashmi.pimprikar@lesley.edu rpimprikar@csteamfutures.com

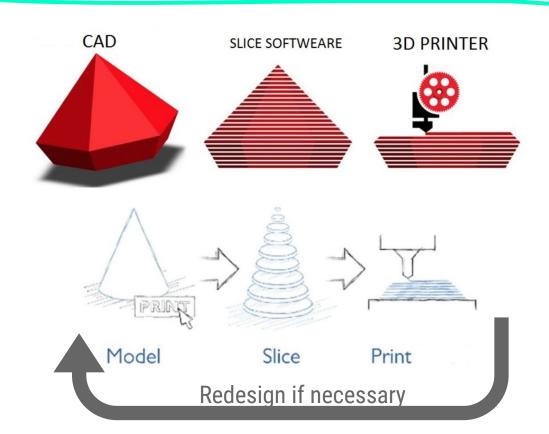
Sue Cusack

Assistant Professor,
Lesley University
Graduate School of Education
&

Director Lesley STEAM Learning Lab

scusack@lesley.edu

WHAT IS 3D MODELING?


3D modeling (or three-dimensional modeling) is the process of developing a <u>mathematical</u> representation of any surface of an <u>object</u> (either inanimate or living) in three dimensions via specialized software. [from Wikipedia]

WHAT IS 3D PRINTING?

3D printing, also known as additive manufacturing (AM), refers to processes used to create a three-dimensional object in which layers of material are formed under computer control to create an object. [from Wikipedia]

3D PRINTING PROCESS FLOW

STANDARDS ALIGNMENT

ISTE

Computational Thinking for Educators (Link)

CSTA

Computer Science Teachers Association (Link)

MA DLCS

Massachusetts
Digital Literacy &
Computer Science
(Link)

STEAM

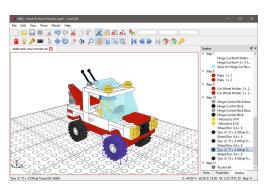
Core Content Standards

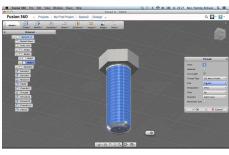
Interdisciplinary Integration

CHOOSING A 3D PRINTER

Things to Consider	Dremel Idea Builder	New Matter MOD-t	MakerBot Replicator+
Maximum print size (H x W x D)	5.5 x 9 x 5.9 inches	5 x 6 x 4 inches	6.5 x 11.6 x 7.6 inches
Materials	PLA	PLA	PLA, ABS
Enclosed?	Yes	Yes	Yes
Connectivity	WiFi; USB	WiFi; USB	WiFi, USB
Generic filament?	No*	Yes	No*
Price	~\$1500	~\$250	~\$2400

FEW TOOLS & ENVIRONMENTS







WHAT IS BLOCKSCAD?

- Q
- Scratch-like coding platform for 3D Modeling
- Compatible with 3D printing
- Learn coding principles while using math to create 3D models

TINKERCAD VS BLOCKSCAD

Tinkercad

- Drag & drop interface; ideal for "tinkering"
- Easier to start
- Rich library of user-generated geometries
- Difficult to make precise designs

BlocksCAD

- Can make precise designs
- Can automate resizing using variables
- Easily make repetitive features using loops
- Uses computational thinking
- Requires more planning
- Limited base geometries

QUICK SESSION ASSIGNMENT

- Option 1: Design a personalized box or cup for your desk (i.e., business card holder).

Option 2: Six(or more)-sided die with numbers/letters/symbols of your choice.

Requirements:

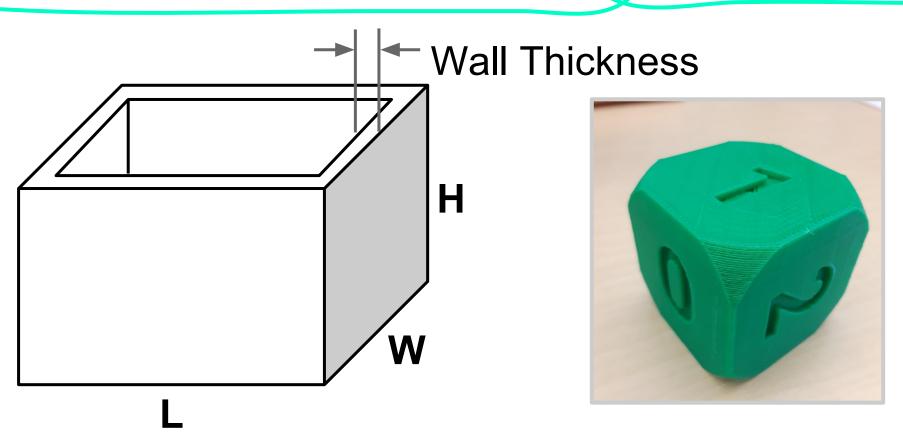
- Evidence of planning and design (i.e., photo of a sketch)
- Use of at least two types of 3D Shapes
- Design must be resizable using variables

BASIC STEPS

Basic Shapes:

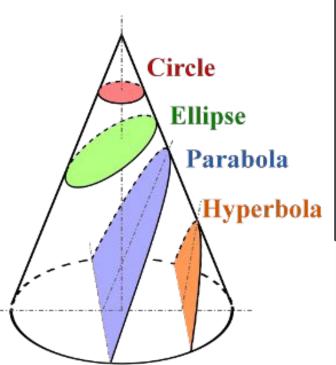
- Box
- Cylinder
- Sphere
- Torus (polygon)

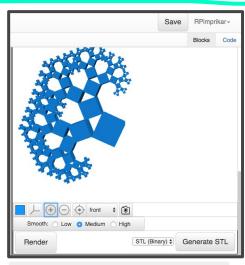
Apply

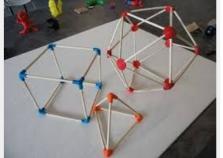

Transformations:

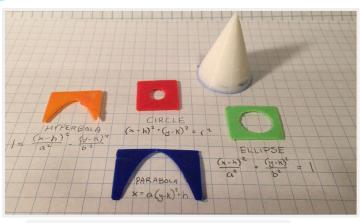
- Translate
- Rotate
- Scale
- Mirror

Combine Shapes:

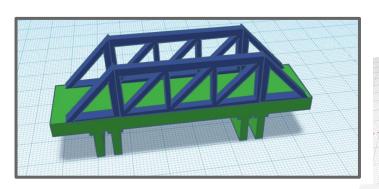

- Union
- Difference
- Intersect
- Hull

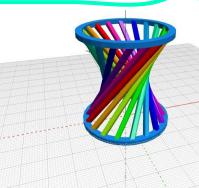

VARIABLE BOX OR DICE




INTERDISCIPLINARY STUDENT PROJECTS

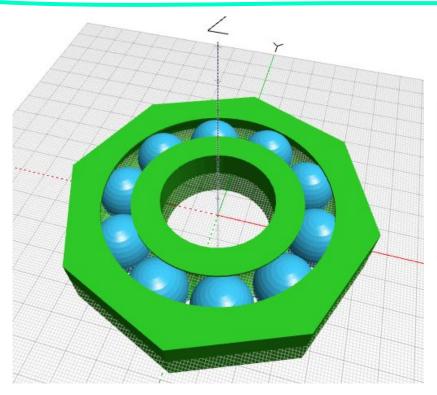
3D MODELING IN MATHEMATICS

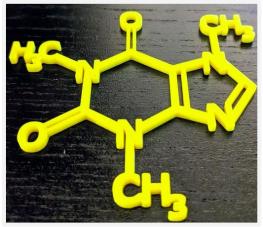


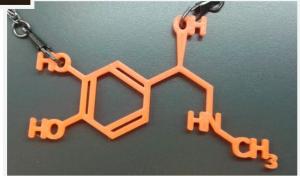


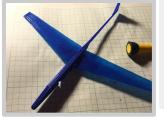


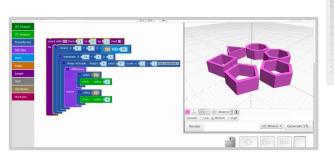
PROTOTYPES

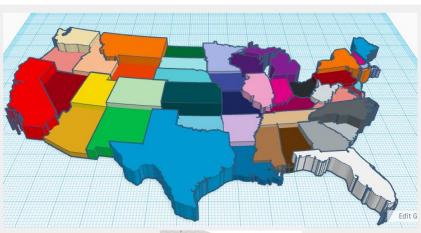



3D MODELING IN SCIENCE




A FEW PROTOTYPES





DLCS @ LESLEY UNIVERSITY

Digital Literacy and Computer Science (DLCS) Overview

The standards for Kindergarten to grade12 are organized by **grade span**: Kindergarten to grade 2, grade 3 to grade 5, grade 6 to grade 8, and grade 9 to grade 12. Within each grade span, standards are grouped in four **strands**: Computing and Society, Digital Tools and Collaboration, Computing Systems, and Computational Thinking. Each strand is further subdivided into **topics** comprised of related **standards**. Standards define performance expectations, as well as what students should know and be able to do. Standards from different strands or topics may sometimes be closely related. Standards in every grade span and strand demonstrate a range of cognitive complexity such as reflected in Bloom's Revised Taxonomy: remembering, understanding, applying, analyzing, evaluating, and creating.¹

Vision

Digital Literacy and Computer Science (DLCS) knowledge, reasoning, and skills are essential both to prepare students for personal and civic efficacy in the twenty-first century and to prepare and inspire a much larger and more diverse number of students to pursue the innovative and creative careers of the future. The abilities to effectively use and create technology to solve complex problems are the new and essential literacy skills of the twenty-first century.

Grade Spans K-2	Strands				
	CAS: Computing and Society	DTC: Digital Tools and Collaboration	CS: Computing Systems a. Computing Devices	CT: Computational Thinking	
3-5	a. Safety and Security b. Ethics and Laws	a. Digital Tools b. Collaboration and	b. Human and Computer	a. Abstraction b. Algorithms	
6-8	c. Interpersonal and Societal Impact	Communication c. Research	Partnerships c. Networks	c. Data d. Programming and	
9-12			d. Services	Development e. Modeling and Simulation	

